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The character of transition from laminar to chaotic Rayleigh-Benard convection in 
a fluid layer bounded by free-slip walls is studied numerically in two and three space 
dimensions. While the behaviour of finite-mode, limited-spatial-resolution dynamical 
systems may indicate the existence of two-dimensional chaotic solutions, we find that, 
this chaos is a product of inadequate spatial resolution. It is shown that as the order 
of a finite-mode model increases from three (the Lorenz model) to the full Boussinesq 
system, the degree of chaos increases irregularly a t  first and then abruptly decreases; 
no strong chaos is observed with sufficiently high resolution. 

In  high-Prandtl-number cr two-dimensional Boussinesq convection, it is found that 
there are finite critical Rayleigh numbers Ra for the onset of single- and two-frequency 
oscillatory motion, Ra 2 60Ra, and Ra 2 290Ra, respectively, for cr = 6.8. These 
critical Rayleigh numbers are much higher than those a t  which three-dimensional 
convection achieves multifrequency oscillatory states. However, in two dimensions 
no additional complicating fluctuations are found, and the system seems to revert 
to periodic, single-frequency convection a t  high Rayleigh number, e.g. when 
Ra 2 800Ra, a t  cr = 6.8. 

I n  three dimensions with cr = 10 and aspect ratio 1 / 4 2 ,  single-frequency con- 
vection begins a t  Ra M 40Ra, and two-frequency convection starts a t  Ra = 50Rac. 
The onset of chaos seems coincident with the appearance of a third discrete frequency 
when Ra 2 65Rac. This three-dimensional transition process may be consistent with 
the scenario of Ruelle, Takens & Newhouse (1978). 

As Ra increases through the chaotic regime, various measures of chaos show an 
increasing degree of small-scale structure, horizontal mixing and other characteristics 
of thermal turbulence. While the three-dimensional energy in these flows is still quite 
small, i t  is evidently sufficient to overcome the strong dynamieal constraints imposed 
by two dimensions. 

Gollub & Benson (1980) found experimentally that frequency modulation of lower 
boundary temperature Ra(t) = Ra(0) [l + E  sin wt]  induces chaotic behaviour in a 
quasi-periodic flow close to transition. We investigate numerically the effects of finite 
modulation of Ra on the flow far below natural transition ( R  = ~ORU,) .  By choosing 
E = 0.1 and the Rayleigh-number oscillation frequency w incommensurate with the 
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frequencies of the quasi-periodic motion, transition to chaos is induced early. This 
result also seems consistent with the Ruelle et al. scenario and leads to the conjecture 
that periodic modulation of the Rayleigh number of the above form in a two-frequency 
flow may provide the third frequency necessary for chaotic flow. 

For moderate Prandtl number, CT = 1 ,  our results show that two-dimensional flow 
seems free of oscillation, while three-dimensional flow is vigorously turbulent for 
Ra 2 70Ra,. 

1. Introduction 
Recent mathematical work on dynamical systems has suggested several ways that 

chaotic behaviour can develop. Ruelle, Takens & Newhouse (1978) suggest a scenario 
in which chaos is likely to be obtained as a parameter (like the Rayleigh number), 
that describes an effective driving force in a physical system, changes. Typically, there 
is a range of parameter values in which the system has only a stable attracting 
stationary solution. As the parameter increases beyond some critical value, there may 
be a transfer of stability from the stationary solution to a limit cycle (possibly through 
a Hopf bifurcation). As the parameter changes further in this scenario the periodic 
solution transfers its stability to a quasiperiodic solutian having two incommensurate 
frequencies. Changing the parameter further causes the two-dimensional torus on 
which the motion was quasi-periodic to become unstable, possibly being replaced 
with motion on a three-dimensional torus or being attracted to a chaotic solution 
which exhibits broadband spectral excitation (possibly superimposed on a discrete 
spectrum). 

The Ruelle-Takens-Newhouse transition scenario should be contrasted with that 
proposed by Landau (Landau & Lifschitz 1959). Landau suggested that broadband 
turbulent excitations are only achieved after an infinite number of bifurcations 
through which the system achieves successively more complicated quasiperiodic 
states. I n  contrast, the Ruelle-Takens-Newhouse scheme suggests that chaos is 
achieved after only three incommensurate frequencies have been encountered. Other 
scenarios for transition to chaos are the ‘universal’ routes via period doubling 
(Feigenbaum 1978) or quasiperiodic states (Rand et al. 1982) and intermittent 
generation of chaos (Pomeau & Manneville 1980). 

In  a convecting fluid layer with fixed physical properties, the forcing parameter 
is conveniently chosen to be the Rayleigh number, denoted R a  and defined for the 
units used in this paper in (2.9). The Rayleigh number is a non-dimensional measure 
of the buoyancy force due to the heated bottom wall driving the convection. In  order 
to determine how well Rayleigh-BBnard convection fits the classification scheme 
described above, it is convenient to define five values of the Rayleigh number that 
distinguish various flow regimes. I n  any given system, some or all of these Rayleigh 
numbers may be nonexistent. First, the linear critical Rayleigh number Ra,  is defined 
so that the heat-conducting motionless state of the fluid is stable to infinitesimal 
disturbances for R a  < Ra,  and is unstable for R a  > Ra,. As R a  increases beyond Ra,  
steady-state convecting rolls appear. These rolls are two-dimensional in character. 
Next, Ra,  is defined as that Rayleigh number a t  which these rolls undergo a 
bifurcation to a periodic, possibly three-dimensional, oscillatory state. Periodic 
convection ensues as R a  increases above Ra,. At Ra,  a second (normally incommen- 
surate) frequency appears, so the flow is quasi-periodic. If the second frequency is 
commensurate with the first, phase locking occurs so the flow is still periodic but with 
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a new frequency. Then at  Rat the flow undergoes transition to a chaotic state with 
broadband frequency response. Of course there may also be transitional numbers 
Ran for n 3 3 in which n distinct incommensurate frequencies are observable; the 
Ruelle et al. scenario suggests that ‘typical ’ systems should satisfy Rat = Ra,. Finally 
there is another critical Rayleigh number that it is useful to define although its exist- 
ence is not anticipated by the generic mathematical analysis outlined above. The Ray- 
leigh number Ra; is defined as that value of Ra at which a reverse transition 
from quasi-periodic or chaotic flow to periodic flow occurs as Ra increases. While the 
flow just below Rai has at  least two incommensurate frequencies present, that just 
above Ra; has but one significant frequency. Furthermore, there may even be 
bands of Rayleigh number between Rat and Ra; in which the flow reverts to quasi- 
periodic behaviour. Finally we emphasize once again that some or all of these putative 
critical Ra may not exist in any particular realization of a real flow. 

In addition to the recent developments in the mathematical theory of dynamical 
systems, there have also been several studies of specific low-order systems of ordinary 
differential equations, often obtained by Galerkin approximation to the Boussinesq 
equations for free-slip Rayleigh-BBnard convection. In his seminal paper Lorenz 
( 1  963) studied the three-component dynamical system obtained by Galerkin projection 
of the equations of two-dimensional convection in the box 0 < x < n 4 2 ,  0 < z < n 
on solutions of the form 

X sl. = a(t)  sin - sin z ,  

T = b(t) cos - sin z + c( t )  sin 22. 

4 2  

4 2  

5 

where sl. is the stream function and T is the deviation of the temperature from the 
conduction profile -2. The result is Lorenz’s model equations 

( 1 . 2 )  1 a = -va+vb, 

6 = -ac+ra-b, 

C = ab-ic, 

where r = Ra/Ra, and a is the Prandtl number (see (2.10)). (Here a ,  b , c  are 
proportional to a,,, b,,, b,, respectively in the generalized expansion (2.14)-(2.15).) 

Lorenz’s model gives Ra, exactly; at r = 1 the conductive state a = b = c = 0 
becomes unstable. The steady convective state is stable for all Ra > Ra, unless v > y. 

Some specific results for a = 10 illuminate the kinds of solutions that are obtained 
for moderately large a. No critical numbers Ra, or Ra, are observed, but it is found 
that chaos starts abruptly at  Rat x 24.74RaC. On the other hand, chaos disappears 
just as abruptly for Ra; % 320Ra, ; for Rat < Ra < Ra; there are many intervals of 
Ra in which the flow is chaotic. For Ra > Rai the flow is periodic. For certain 
parameter ranges, this behaviour of the system fits the Pomeau-Manneville scenario 
and also exhibits period doublings. 

An extension of the Lorenz model was considered by Curry (1978, 1979) in which 
the two-dimensional Boussinesq equations are projected on a 14-variable subspace. 
In Curry’s model with a = 10 the sequence of bifurcations leading to chaos is as 
follows. For r < 1 the conductive state is stable. For r > 1 there is a bifurcation to 
convection. The steady convective solutions remain stable until r = 43.50, where a 
Hopf bifurcation occurs. The resulting periodic orbit remains stable until r = 44.40, 
where a single period-doubling bifurcation occurs. When r exceeds 44.85 the resulting 
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period-doubled orbit undergoes a bifurcation to a two-dimensional torus. As the 
parameter value increases further, the motion on the torus first becomes phase-locked 
and then becomes quasi-periodic with two incommensurate frequencies. Then a t  
r = 45.18 chaos is observed. Thus the sequence of bifurcations for Curry's 14-variable 
model seems to be consistent with the RuelleTakens-Newhouse scenario. 

I n  this paper we extend these earlier studies of the behaviour of systems of ordinary 
differential equations to study the behavior of free-slip Rayleigh-Bdnard convection. 
Specifically our objectives are twofold. First we examine the resemblance of the 
behaviour of low-order dynamical systems to the behaviour of a Boussinesq fluid. 
Secondly we study in some detail the nature of transitions and turbulence in two- 
and three-dimensional Boussinesq fluids. In  $ 2 we summarize the dynamical equations 
and numerical methods used in our studies. Then in $ 3  we compare the transitional 
behaviour of finite-mode systems obtained by Galerkin projection of the two- 
dimensional dynamics to accurate solutions of the Boussinesq equations. I n  $ 4  the 
states of high Prandtl number two-dimensional convection are studied. Then in $5 
the character of three-dimensional convection is discussed. 

2. Formulation and numerical solution 
The equations of motion of a Boussinesq fluid layer are 

V'V = 0. (2.3) 

Here v = (u, v, w) is the velocity field a t  x = (x, y, z ) ,  w = V x v is the vorticjty, p is 
the pressure (assuming the density to be normalized to l ) ,  T is the deviation of the 
temperature from the conduction profile -/3z (so that T-pz is the actual tempera- 
ture), v is the kinematic viscosity, K is the thermal conductivity, and a is the thermal 
expansion coefficient (in units where the gravitational acceleration and the density 
are 1). The flow is assumed to occur in the region 

O , < x < A H ,  O < y < , u H ,  O , < z < H .  (2.4) 

Periodic boundary conditions are applied in x and y with periods AH and pH 
respectively : 

v (x+mAH,y+npH,z , t )  = v (z ,y , z , t )  

for all integers m, n. Free-slip (no-stress) impermeable boundary conditions are 
applied a t  z = 0, H ,  so 

au av - _ -  - = w = 0  ( z = O , H ) ,  
a x  az (2-5) 

while T is assumed to satisfy the conducting-boundary condition 

T =  0 ( Z  = 0 , H ) .  (2.6) 

Also, p > 0 corresponds to  a thermally unstable layer, while /3 < 0 gives a thermally 
stable layer. 

Equations (2.1)-(2.6) may be non-dimensionalized in terms of the vertical thermal 
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diffusion time H 2 / ~ ,  the vertical lengthscale H ,  the velocity scale K / H  and the 
temperature scale 1/31 H .  I n  these units (2.1) and (2.2) become 

where 

av 
at - = v x ~ - v ( p + $ ~ )  + Ra uTz+ aV2v, 

aT 
-+v'VT at = (sgn/3)w+V2T, 

1/31 H 4 .  Ra  = ___ 
V K  

0- = V / K  (2.10) 

are respectively the Rayleigh and Prandtl numbers. With this non-dimensionalization, 
the critical Rayleigh number for onset of convection in the layer 0 < x < 1 is 
Ra,  = 77c4 x 657, which is achieved for h2+p2 = 21t, independent of 0-, provided that 

Equations (2.1)-(2.6) are solved using spectral methods (Orszag 1971). The 
p >  0. 

dependent flow variables are expanded in the Fourier series 

The nonlinear terms are evaluated by fast-transform methods with aliasing terms 
usually removed. Time-stepping is done by a leapfrog scheme for the nonlinear terms 
and an implicit scheme for the viscous terms (either the Crank-Nicolson or backwards 
Euler scheme, depending on application). The pressure term is computed in Fourier 
representation by local algebraic manipulation of the incompressibility constraint 
(2.3). 

The above method has been implemented for both two and three space dimensions. 
I n  the two-dimensional code ( N  = 0 in (2.11)) typical computer times on the Cray-l 
computer are about 0.15 s per time step with M = P = 128; this time scales as 
M P  log, MP. The three-dimensional code on the Cray-1 computer requires 0.6 s per 
time step with M = N = P = 32; this time scales as M N P  log, M N P .  Typical runs 
reported below involve as many as 8 x lo4 time steps; typical results are obtained 
using M = 64, P = 32 in two dimensions and M = N = 32, P = 16 in three dimensions, 
and involve less than 2 h of computer time per run in three dimensions. 

In order to increase the effective spatial resolution of small scales in the flows 
without increasing substantially the computational expense, i t  is useful to study flows 
satisfying certain symmetry properties. It may be shown that (2.1)-(2.6) are 
consistent with the following symmetries of the Fourier components in (2.11) (written 
for the two-dimensional case only) : 

(2.12) 

(2.13) and ii = 21 = = 0 unless m + p  = 0 (mod 2). 

Equations (2.12) and (2.13) reduce the required storage and work per time step by 
about a factor 4. The technical details of how to do this are described in appendices 

1 N m ,  p ,  t )  = - @ --m, P,  4 ,  
&zit(% P, t )  = &( --m, P, q ,  
T ( m , p , t )  = P ( - m , p , t ) .  
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B and C of Brachet et al. (1983). With the symmetries (2.12) and (2.13), the 
two-dimensional code with M = P = 128 requires about 0.04 s per time step on the 
Cray-1 . Results are reported here using the symmetrized code for two-dimensional 
simulations only. 

With the symmetries (2.12) and (2.13) the two-dimensional stream function and 
temperature field may be expanded as 

2mnx 
h 

k(x, z,  t )  = Z X a m p ( t )  sin- sin pnz ,  
m+D even 

(2.14) 

(2.15) 

where the stream function @ is related to the velocity field by u = a@/az, w = - a@/ax. 
Note that (2.14) and (2.15) are special forms of (2.11) with B= iM. 

3. Spurious chaos of truncated dynamical systems 
I n  this section we investigate how well the behaviour of low-order systems of 

ordinary differential equations reflects that  of the partial differential equations 
governing a convecting layer. The problem is that, while i t  may be justified to use 
only a few degrees of freedom to represent the steadily convecting flow states achieved 
when Ra just exceeds Ra,, it is not apparent that  such truncated flow representations 
are valid for the more complicated flow states that  may be obtained a t  higher Ra. 

It has been noticed previously by us (see Orszag & Kells 1980 ; also Marcus 1981 ; 
Treve & Manley 1982) that  too little spatial resolution in the solution of partial 
differential equations can induce chaos in the computed solution which disappears 
when adequate resolution is used. This effect may perhaps be considered surprising 
as one might expect that, as partial differential equations involve an infinite number 
of degrees of freedom, their solutions would be richer and more chaotic than solutions 
to finite-mode dynamical systems. On the contrary, the sea of weakly excited 
small-scale modes in a dissipative dynamical field seems to act as an effective 
damping, or eddy viscosity, which tends to reduce the tendency of modes to exchange 
energy in a chaotic way. 

Here we show that high-Prandtl-number Rayleigh-BBnard convection also exhibits 
spurious chaos when inadequate resolution is used. I n  fact, while the hierarchy of 
models that  generalize the low-order systems of Lorenz (1963) and Curry (1979) 
apparently do each exhibit some degree of randomness for high cr, the full two- 
dimensional Boussinesq equations, used to generate these finite-mode models, seem 
to have solutions that are never chaotic (or, a t  least, not strongly chaotic) to the 
resolution and accuracy of our computations. The apparent absence of true chaos in 
high-Prandtl-number two-dimensional convection will be discussed in $4. 

To illustrate spurious chaos a t  low spatial resolution, we consider the solution to 
the system (2.7), (2.8), (2.12)-(2.15) with v = 20, Ra = 120Ra,. I n  figure 1 we plot, 
for various H a n d  P in (2.14) and (2.15), time histories of the temperature Fourier 
coefficient bo,( t )  and its power-spectral density 1602(f)lz computed as 
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FIGURE 1. Time series b,,(t) and time spectra log 6,,(f) for two-dimensional truncated symmetric 
convection runs at Ra = 120Ra,, (T = 20, h = 22/2 for various g, P :  (a )  x= 1 ,  P =  2 ;  (b) 2,  3;  
( c )  3, 4; ( d )  5 ,  6. The initial conditions are a,, = 1 with all other Fourier components zero. Notice 
that  the qualitative behaviour of the time series and spectral changes markedly with changing 
modal truncation. 
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65  

FIGURE 2. Time series ( a )  b,,(t) and ( h )  a,,(t), and time spectra ( c )  log 6,,,(f) and (d) log b,,(f), for 
the same run as in figure 1 but with M =  P = 7.  Obverve the strongly chaotic nature of this 
solution. 

where bo2 = i-lji b,, dt. The window function 1 - cos ( 2 x t l f )  is used to reduce finite-time 
effects. Also, the time interval 0 < t < f is shifted so that i t  represents roughly the 
final third of a long-time integration of the equations of motion. The Lorenz system 
( M =  1, P = 2 )  has a weakly chaotic solution, as evidenced by the broadly excited 
spectral density. On the other hand, with x = 2, P = 3 ,  a quasi-periodic solution is 
achieved with discrete lines a t  f ,  % 54, f i  % 4.3 x lo2. For M =  3, P = 4 the solution 
is apparently chaotic again with somewhat broader spectral excitation than in the 
Lorenz system. The solution becomes less chaotic again a t  x= 5, P = 6. 

I n  figure 2 we plot time histories and power spectra of a,, and b,, €or the case 
M = P = 7 .  Here the solution is strongly chaotic, as evidenced by its spectrum. As 
%and P increase further, the chaos abruptly disappears. I n  figure 3 we plot time 
histories and power spectra of a,, and b,, €or = P = 41. With both 
resolutions the solutions are periodic with discrete line spectra and do not sensibly 
differ from each other. The agreement between the x= P = 19 and g =  P = 41 
results (and with other computations a t  i?@= 41, P = 84 and x= 84, P = 41) 
demonstrate convergence to the solution of the Boussinesq equations a t  CT = 20, 
Ra = 120Ra,. 

The behaviour just described a t  CT = 20, Ra = 120Ra, seems to be typical for the 
two-dimensional Boussinesq problem. As g and P increase in (2.14) and (2.15), 
solutions a t  first tend to have increased complexity (though not monotonically so with 

= P = 19 and 
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FICURE 3. (a)  Time series of b,, for the same run as in figures 1 and 2 but  with 
Time series of a,, for the run with x= P = 40. (c) Time series of b,, for the run with 
( d )  Time spectra log &,(f) for the run with 
is periodic and insensitive to  further changes in modal truncation. 

= P = 19. ( b )  
= P = 40. 

= P 2 19 the time series = P = 40. Observe t h a t  for 

increasing H and P)  and then to undergo an abrupt reverse transition into a simple 
periodic or a t  worst quasi-periodic state. Once this simple state is achieved, further 
increases in H a n d  P do not affect the solution. For example, in figure 4 we plot the 
time series for the temperature Fourier mode b,, when (+ = I ,  Ra = BORa, for various 
low-order truncations. With sufficient resolution a stable steadily convecting state 
is obtained. 

It is possible to recognize spurious chaos without fully checking solutions as a 
function of the resolution H a n d  P. It seems that solutions exhibiting spurious chaos 
have large excitations in modes near the wavenumber cutoffs H and P. In figure 
5 we plot the spatial spectra of kinetic and thermal energy for the runs a t  = 20, 
Ra = 120Ra, with = P = 7 
intermittently in time has very significant excitations near the cutoff whereas the 
flows for % = P = 19,41 have well-defined dissipation ranges. (If, at some resolution, 
a temporally periodic flow is obtained i t  is unlikely that further increases in resolution 
will change its qualitative character. Indeed, smooth periodic solutions typically have 
well-defined (spatial) dissipation ranges in which increasing the spatial resolution 
gives only exponentially small corrections.) 

The results of this section show that one must be very careful in inferring behaviour 
of physical systems from low-order dynamical models. Such models often give good 

= P = 7 ,  19,41. The spuriously chaotic solution a t  
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n t 0.65 
(b  ) ( d )  

FIGURE 4. Time series of b,, for symmetric convection runs at Ra = 80Ra,, CT = 1 ,  h = 2 d2. (a) 
= 1, P = 2; ( b )  2 , 3 ;  (c )  3,4; (d) 19, 19. For sufficiently high modal truncation a time-asymptotic 

steady state is achieved. 

representations of solutions that vary slowly in space, but they may misrepresent 
solutions whose dynamics are governed through boundary and/or internal layers 
beyond the resolution of the retained modes. 

4. Two-dimensional time-dependent convection at r~ = 6.8 
In  this section we consider the behaviour of two-dimensional Boussinesq convection 

for water (a = 6.8) as R a  increases beyond Ra,. All solutions discussed here are 
adequately resolved in the sense of $ 3  as their behaviour has been checked by 
increasing (and decreasing) the spatial-resolution parameters M and P and the time 
step At. In  addition our codes have been checked by comparison with published 
results of Moore & Weiss (1973). The present results extend those of Moore & Weiss 
to RalRa ,  x 1000. 

As R a  increases beyond Ra,  steady convection is first achieved. The behaviour for 
increasing R a  depends somewhat on whether or not the symmetry conditions (2.12) 
and (2.13) are imposed. It seems that, as found also in the rigid-boundary convection 
studies by McLaughlin & Orszag (1982), the symmetry-preserving steady rolls are 
first unstable to a symmetry-breaking instablity that leads to an oscillatory 
convecting state. In figure 6 we plot the time history and power spectra of the 
resulting oscillatory convection a t  u = 6.8, R a  = 60Ra,. It seems that this flow is 
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FIQURE 5. Spatial kinetic (a )  and thermal ( b )  energy spectra for the runs plotted in figures 1-3. 
x ,z= P = 7 ;  o,Z= P = 19; +, g =  P = 41. The chaotic character of therun with %= P = 7 
is signalled by the large energy near the spectral cutoff. Here k2 = (2m7~/h)~ + ( P X ) ~  (see (2.14) and 
(2.15)). 

indeed periodic. Our best estimate is that there is a bifurcation of two-dimensional 
steady convection to two-dimensional oscillatory convection for cr = 6.8, 
Ra > Ra, x 50Ra,. 

When the symmetries (2.12) and (2.13) are forced to hold, the bifurcation to 
oscillatory convection is postponed to Ra, x 90Ra,, consistent with the earlier 
results of Moore & Weiss (1973) for symmetric convection. I n  figure 7 time histories, 
spectra and mean profiles for the resulting oscillatory state Ra = 100Ra, are plotted. 
The flow is periodic; only harmonics of the basic energetic frequency are excited. 
Contour plots of temperature and streamlines a t  various stages through an oscillation 
cycle are given in figure 8. The basic oscillation period can apparently be characterized 
in two ways. First i t  is the time necessary to convect the hot and cold blobs of fluid 
apparent in figure 8 around the convection cell (Moore & Weiss 1973). Secondly this 
characteristic time seems also to be close to the Brunt-Vaisala thermal oscillation 
frequency based on the (stable) mean temperature gradient in the convective core 
of the cell (see figure 7 c ) .  
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FIGURE 6 .  Time series and time spectra for two-dimensional non-symmetric convection at 
RU = 60Ra,, = 6.8, h = 2 d2. (a )  a(l, 0, 1 ,  t )  (see (2.11)); ( b )  log N l ,  0, 1,f); ( e )  Zir(2,0,3, t ) ;  (d )  
log $ ( 2 , 0 , 3 , f ) .  

Because of computer limitations, our further study of transitions in two-dimensional 
convection is limited to the symmetric systems in which (2.12)-(2.15) hold. While we 
may miss some very significant phenomena because of this assumption, our results 
do not contradict the qualitative behaviour of check runs made without the 
symmetry assumptions. 

For r = 6.8 periodic convection seems to persist up to  about R a  M 290Rac. For 
Ra > Ra,  M 290Rac, a new oscillation period emerges a t  very low frequency. For 
example, in figure 9 we give time series, frequency spectra and PoincarA maps for 
the two-dimensional flow a t  R a  = 400Ra,. I n  this case, the solution is nearly periodic 
with a period 40 times longer than that of the most-energetic frequency component. 
The time-series plots given in figures 9 (a ,  c) are over just one of these long periods; 
the spectra (figures 9b, d )  are computed over six of these long periods. The distinct 
line spectrum is apparent; the separation between the lines is the low frequency of 
the new period. 

The type of oscillatory state observed in figures 9 ( a ,  c) is remarkably similar to 
nearly two-dimensional flow states recently observed by Libchaber and his coworkers 
(private communication 1982) in low-Prandtl-number convection in a strong magnetic 
field (see figure 9 e ) .  Apparently the magnetic field can suppress the three-dimensional 
flow a t  low-to-moderate R a  so that the flow mimics two-dimensional behaviour ; a t  
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FIGURE 7. (a)  Time series b,,(t) for a two-dimensional truncated symmetric convection run at 
Ra = lOORa,, = P = 19. The initial condition is as in figure 1. (b )  log S,,,(j) ; 
( c )  ( T )  ( z ,  t )  versus z a t  two times differing by one-half of the short oscillation shown in (a).  The fre- 
quency of this oscillation seems to be the Brunt-Vaisala frequency of the stable core of 
the ( T )  ( z )  profile. 

= 6.8, A = 2 2/2, 
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(ii) 

(iii) 
(a ) 

FIQURE 8(a) .  For caption see facing page. 

sufficiently high R a  three-dimensional excitations overcome the magnetic field 
constraint. 

In  figure 10 we plot contours of various components of the flow field. That is, we 
spectrally decompose the time-dependent flow as 

V ( X ,  t )  = u(x,fl eizn:ft df s 
and plots contours of u(x,fl for various frequencies f. The plots in figure 10 are 
constructed for f = 0,  f,, fi, f , ,  where fl is the most-energetic frequency (see figure 9), 
fi = i f ,  is its subharmonic, and f ,  is the low-frequency period (J3 z &fl z 10). The 
plots for f = 0 show the mean field through an oscillation cycle. 

Again, the frequency fi may be identified as the BrunkVaisala frequency of the 
stable core of the mean temperature profile when the flow is not undergoing one of 
its long-period transitions (see figure 98 .  While we cannot yet explain the physics 
of the oscillation a t  the low frequency f 3 ,  it  may be significant that the flow component 
responsible for this oscillation is nearly a standing wave and f 3  z CT, the viscous 
diffusion frequency. 

The Poincark maps plotted in figures 9 ( h ,  i )  suggest that this flow is not strongly 
chaotic. As the orbit evolves, the curves in these Poincark maps are filled alternately 
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(ii) 

FIGURE 8. Contour plots of vorticity and total temperature for the symmetric convection run with 
Ra = 400Ra,, u = 6.8, h = 2 .\/a, fi!f = P = 40. ( a )  (i)-(iv): vorticity contours at t = 0, {, +, f 
respectively of the short time period seen in the time-series plots in figure 9 ( b )  (i)-(iv) : contour plots 
of total temperature a t  t = 0, i, It, 9 respectively of the short time period. Observe that the vortex 
cores (a )  and hot and cold blobs ( b )  require two of the short oscillation periods to circulate around 
the box. 

on opposite sides, apparently because of the significant excitation a t  the subharmonic 
fi. While the structure of the PoincarB maps is not highly chaotic, we cannot rule 
out weak chaos that may be producing slight jiggling of the computed points. 

As Ra increases further, the two-dimensional Boussinesq system seems to undergo 
a reverse transition to single-frequency periodic convection a t  Rai  z 800Rac. In 
figure 11 we plot the time series and power spectra at R a  = 1000Rac. Observe the 
simple line structure of the power spectra. No more-complicated behaviour is found 
a t  higher Ra with the symmetries imposed. The reverse transition to simply periodic 
convection is similar to that found in the Lorenz model. 

When the lower Prandtl number o- = 1 is used, fully resolved calculations with the 
two-dimensional Boussinesq equations (assuming the symmetries (2.12) and (2.13)) 
seem to give only steadily convecting states (cf. figure 4). No instabilities to even 
single-frequency periodic convection have yet been found. 

While we have not found evidence of chaotic behaviour in two-dimensional BBnard 
convection, it is possible that chaos may appear in this system if large-aspect-ratio 
flows are considered. Our results reported here are restricted to  aspect ratio h = 2 2/2.  
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FIGURE 9(u-e). For caption see facing page. 

At larger aspect ratios A ,  chaos may appear as slow oscillations of convection cell size 
and location. This possibility requires further investigation by direct numerical 
solution of the Boussinesq equations. In  addition, i t  should also be stressed that, in 
more complicated systems like doubly diffusive convection (Moore et al. 1983), chaos 
may develop even in two space dimensions. 

5. Three-dimensional results 

5.1. Initialization procedure and description of runs 

Three-dimensional, as opposed t o  two-dimensional, convection may develop vertical 
vorticity through the interplay of the buoyancy and the nonlinear terms. This 
isotropization of vorticity by nonlinearity plays an important role in the development 
of turbulence in the flow. Indeed, results for three-dimensional convection without 
significant vertical vorticity (for example with square or cylindrically symmetric 
cells) have the attributes of two-dimensional convection, including kinetic energy 
locked into the largest scales. 
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FIGURE 9. Time series, time spectra and Poincar6 maps for the symmetric convection run at 
Ra = 400Rac, u = 6.8, A = 2 4 2 :  (a )  b,,(t) ; (b) log b,,(f); (c) a,,(t); (d )  log a,,(f). The spectra plotted 
in (b, d )  are computed over six of the long periods At w 0.10 of the time series plotted in (a ,  c).  The 
line structure of the spectra is due to the periodic character of the time series over this long period. 
( e )  Time series observed by Libchaber and coworkers in three-dimensional magnetohydrodynamic 
convection a t  magnetic field B = 1.15 G, Ra = 6.76Rac. For Ra 5 6.7Rac, single-frequency 
periodic two-dimensional convection is observed, while for Ra 2 6.8Rac chaotic three-dimensional 
convection is found. At this intermediate Rayleigh number we observe a close simularity to the 
time series plotted in (a ,  c). (f) (T) (z )  versus z at various times separated by one-half the short period 
observed in (a ,  c),  but outside the times in which a,, undergoes the rapid transition observable in 
(c). (9 )  (2') ( z )  versus z plotted every half short period during the period of rapid transition of 
all .  ( h , i )  Poincarh maps of a,, versus b,, when b,, = -0.32, db,,/dt > 0 and Nusselt number Nu 
versus b, ,  when b,, = -0.32 with db,,/dt > 0 respectively. 

To initialize our three-dimensional runs we generate the fields (v(x,  0), T ( x ,  0)) as 
uncorrelated Gaussian data with prescribed spectra. This procedure is analogous to 
that used in isotropic turbulence calculations (Orszag & Patterson 1972; Herring & 
Kerr 1982). The energy spectrum E ( k )  is of the form 

E ( k )  = Ak2 ePBk2, (5.1) 

where B = 0.05, and A is chosen so that the total kinetic energy is Etot = i. The 
motivation for choosing to initialize the three-dimensional runs with a random flow 
field is based on our experience with three-dimensional transition runs. I n  contrast 
with two-dimensional flows, three-dimensional flows do exhibit chaotic behaviour so 
we will present statistical measures of the resulting turbulence. However, in order 
to achieve a statistically nearly stationary state in these turbulent runs i t  is best to 
choose random initial conditions. I n  the non-chaotic transitional regime it  seems that 
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FIQURE 10. Contour plots of stream function and total temperature for the run at Ra = 400Ra,, 
v = 6.8, h = 2 4 2 .  (a )  Mean stream function. ( 6 )  Mean total temperature. ( c )  Stream-function 
amplitude contours for the flow component oscillating with frequency fi. ( d )  Total temperature 
amplitude for the flow component oscillating at frequency fi. ( e )  Stream-function amplitude 
contours a t  the subharmonic frequency fz. (f) Total temperature amplitude contours for fz. (9 )  
Stream-function amplitude contours a t  the low frequency fa. ( h )  Total temperature amplitude 
contours a t  fa .  
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FIGURE 11. Time series of bo,(t) (a )  and its time spectrum log 6,,(f)  (6) for the symmetric convection 
run at Ra = 1000Ra,, (T = 6.8, z= P = 40. This flow has reverted to  a purely oscillatory state. 
It seems tha t  Ra; “N 800Ra, for symmetric convection. 

we can still recognize the basic transitional frequencies in such randomly initialized 
runs. 

We designate a three-dimensional run with resolution (41, N ,  P )  (see (2.11)) by 
simply prefixing this triad with the value of RalRa, for the run. Thus 70(163) 
designates a run for which Ra/Rac = 70, and M = N = P = 16, while 70(322 x 16) 
designates M = N = 32, P = 16, Ra/Ra, = 70. The runs investigated in this section 
are a t  r = 10, with the exception of those in $5.4, for which (T = 1 .  In addition, we 
choose h = ,u = 2 d2 in all the following runs. 

5.2.  Results f o r  three-dimensiona,l transition 

Our results concerning transition are presented using both a series of 163 and 322 x 16 
runs. At the end of this subsection we examine the numerical accuracy of the 
70(322 x 16) run by comparing with a single 70(323) run. The convergence question 
is not completely settled here; the 322 x 16 runs do show some wavenumber-truncation 
errors a t  high k, especially for the dissipation of the temperature field. However, a 
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FIGURE 12. Time series for (w(p, b ) ,  T ( p ,  t ) )  for resolution 163 runs. Here p denotes the coordinate 
of a point near the middle of the convection box. The four cases shown are Ra = (40,50,60,70) Ra,. 
All runs are initialized using the same random number seed, as described in the text. Note the 
progressive increase of noisiness in the w and, especially, T time series as Ra/Ra, increases. 
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full study of the transition problem a t  323 is a t  present prohibitively costly, even on 
a Cray-1 computer. 

Our results suggest the following transition sequence : a t  163 resolution, the 
transition towards chaos proceeds from a single-frequency oscillation a t  Ra x 40Ra, 
to a two-frequency quasi-periodic state (45Ra, 5 Ra 5 55Ra,), and then to a 
multifrequency phase-locked regime (55Ra, 5 Ra 5 65Ra,), followed by a chaotic 
state (Ra 2 70Ra,). On the other hand, the better resolved 3Z2 x 16 and 3Z3 runs 
appear to have no phase-locked periodic regime; instead they have an harmonically 
rich behaviour qualitatively indistinguishable from the chaotic state a t  larger Ra. The 
quasi-periodic regime in the 322 x 16 runs appears considerably more noisy than 163 
runs a t  the same Ra, a; the 163 results are presented here solely to elucidate further 
the dynamics of a relatively low-order spectral system, not because they provide an 
accurate representation of the physics of the system. 

I n  figure 12 we plot the time series of the temperature field as computed by 
numerical solution of the three-dimensional Boussinesq equations with 
M = N = P = 16 (see $92 and 5.3), with random initial data as described above. 
Power-spectral densities for temperature and vertical velocity are given in figure 13. 
For Ra./Ra, < 35 a steady convecting roll state is attracting. At RalRa, x 40 
periodic motion with a non-dimensional frequency of 39 develops at large time. Note 
that this Ra is consistent with the results of Busse (1972) for the onset of oscillatory 
instability rolls: RalRa, x 0.31a2+ 1. At RalRa, x 50 this periodic oscillation is 
replaced by a quasi-periodic motion having two incommensurate frequencies 
f ,  x 45.2 and fi x 13.5 (see figure 13). All other peaks that appear in the spectra are 
of the form m, f,+m, fi, where m, and m2 are integers. 

For RalRa, = 60 the plots in figures 12 and 13 indicate that the motion is 
phase-locked and all peaks in the spectra are multiples of the single frequency 
fL x 7 . 1 .  This phase-locked state seems to  be achieved when the ratio of the two 
frequencies f ,  and f2  increases to fl/f, = y .  I n  the associated temperature spectrum 
plotted in figure 13 (at Ra = BORa,) it is possible to distinguish pairs of spectral peaks 
which are very close to splitting. This observation suggests that the system is about 
to exit its phase-locked regime. For RalRa, 5 60 the seemingly chaotic low-amplitude 
background to the periodic spectra is likely to be due t o  our processing of the time 
series and not to fluid turbulence. As RalRa, increases from 60 to 65, the frequency 
spectra again exhibit two incommensurate frequencies fl x 7.35 and f2 x 8. Both fl 
and f 2  are close to the fundamental locking frequency f L  at RalRa, = 60. At 
RajRa, = 65 the flow seems slightly chaotic. 

Finally a t  RalRa, = 70 the temperature spectrum is noisy and quite broad, 
although a sharp spectral line is still visible in the velocity spectrum. However, even 
for the velocity field, the background noise level has increased by a t  least two orders 
of magnitude. The relative noisiness of the temperature compared to the velocity is 
apparently due to the high Prandtl number of the fluid. 

In  figure 14 we present two-dimensional phase projections of the 163 orbits at 
various Ra. The curves show u(p ,  t )  versus w(p, t )  (where p is a coordinate near the 
midpoint of the box) for 3 < t < 4. The two plots a t  Ra = 60Ra, are obtained for 
different initial conditions, showing dependence of the final quasi-periodic state on 
initial data. This difference may also suggest alternative routes to chaos, in addition 
to the Ruelle et al. scenario described in $1 .  At Ra = 65Ra, the phase portrait in 
figure 14 suggests a chaotic flow although the spectrum of the flow is still dominated 
by phase-locked lines. Only the velocity components have phase plots that  project 
onto a torus ; those that involve the temperature appear much more random. 
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FrGURE 13. Power-spectral densities for the (w(p,t), T ( p , t ) )  fields whose time series are shown in 
figure 12. Only the last of the time record is used in the Fourier analysis in order to eliminate the 
initial transient. 
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FIGURE 14. Two-dimensional phase projections of the (u (p ,  t ) ,  w(p, t ) )  fields for the same runs as 
described in figures 12 and 13. The plot marked 60A shows the case Ra = 60Ra, for a slightly 
different initial random seed, and illustrates dependence of the final quasiperiodic state on the initial 
data. Also shown is the case Ra = 65Ra, which suggests a slightly chaotic flow, although the power 
spectra appear dominated by two frequency components. 

I n  figures 15 and 16 we present time series and power spectra for the 322 x 16 
system, which may be compared with the results plotted in figures 12 and 13 
respectively for the 163 mode system. We notice a marked attenuation of high- 
frequency power, but an increased randomness of the surviving low-frequency 
components, particularly near Ra = 60Rac. Analysis of the 60(322 x 16) case is 
especially difficult because of the long initial transient ( t  z 8), during which the 
temperature fluctuations are unusually small. Apparantly Ra = 60Rac is close to a 
transition to a more-chaotic state. Comparing again with figures 12 and 13, we note 
that the quasi-periodic regime near Ra = 55Ra, is considerably noisier than the 163 
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FIGURE 15. Time series for (w(p, t ) ,  T ( p ,  t ) )  for 3Z2 x 16 runs. Except for increased resolution. these 
runs are identical with those described in figures 12-14. Note the strong attenuation of high 
frequencies as compared with the time series of figure 12, indicating inadequate resolution of the 
163 runs, except at Ra = (40,50) Ra,. 
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FIGURE 16. Power spectra for (w(p, t ) ,  T ( p ,  t ) )  for resolution 322 x 16 during the latter 3 of the time 
record. For Ra = 60Ra, the increased resolution relative to the run whose results are plotted in 
figure 13 appears both to attenuate the high frequencies and to increase the 'randomness' of the 
surviving low-frequency components. 



26 J .  H .  Curry, J .  R.  Herring, J .  Loncaric and 8. A .  Orszag 

Ra Ra 
- = 55 = 50 - 

Ra, Rac 

W 

U I4 

FIGURE 17. Phase plots for (u(p,t), w(p, t ) )  a t  resolution 322 x 16. Except for resolution, the 
conditions of these runs are the same as those of figure 14. In  comparison with the equivalent 
low-resolution runs (see figure 14) we note the apparent absence a t  RalRa, = 50 of the two 
frequencies, and the less well-defined two-frequency regime at RalRa,. 

results; it is much more difficult to discern any possible phase-locked behaviour in 
the range 60Ra, < Ra < 65Ra,. Notice that the 50(322 x 16) run appears still to be 
primarily a single-frequency flow as opposed to the 50(163) run, which has already 
bifurcated to  two frequencies. 

I n  figure 17 selected phase plots are given for the 322 x 16 runs a t  Ra = (50, 60, 
70)  Ra,. I n  contrast with the 163 results plotted in figure 14, the plot of (u(p ,  t ) ,  w(p, t ) )  
at 50Ra, is now a simple circle, corresponding to the presence of only a single 
frequency. The phase plot a t  Ra = 60Ra, has much the same appearance as with 163 
resolution. At Ra = 70Ra, we again observe a chaotic regime. The transition scenario 
reported here for three dimensions closely parallels route I described by Gollub & 
Benson (1980). The qualitative differences are related to  the existence or non-existence 
of phase-locked regimes, although such regimes may be present for some range of 
parameters, they are not observed by us because of the coarseness of our slice through 
parameter space. 

We now examine the accuracy of the 322 x 16 run a t  the highest Ra considered 
(70Ra,), since a t  this Ra convergence should be poorest. This issue is considered both 
from the perspective of contour plots of the various fields and time series of the fields 
a t  a particular point. I n  figure 18 contour plots of the temperature field are given 
at t = 4 for the three resolutions 163, 322 x 16 and 323. Both horizontal and vertical 
slices are shown. Notice that for the 163 runs the ascending and decending plumes 
are ill defined and are accompanied by apparently spurious, closed, small-scale 
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FIGURE 18. Comparison of contour plots of the T(x ,  t )  field for resolutions 16s, 322 x 16 and 3Z3 at 
Ra = 70Ra, and t = 4.0. (a)  Vertical (z = 0.5A) slices; and ( b )  horizontal (z  = 0.5) slices. The 
numerical spatial noise in the 163 runs appears as high-frequency noise in figure 13. 

temperature contours, indicating poor resolution. On the other hand, the 322 x 16 
fields are much more reasonable, with well-defined plumes extending over the whole 
core region of the flow. The latter fields still do not resolve well the temperature 
dissipation in the core region, but the contribution of this term to the entropy budget 
is small. 

In figure 19 time series are plotted for T ( p ,  t )  (0 < t < 4) for the three resolutions. 
The 322 x 16 run remains well correlated with the 323 run during the entire time- 
span (especially for low-to-moderate frequency features), but the 1tj3 run rapidly de- 
correlates for both v and T fields. At long times the ( v ,  T )  fields for 322 x 16 and 323 
must diverge if the flow is intrinsically unpredictable. Estimates for the time of 
unpredictability are a few large-scale turnover times (Leith & Kraichnan 1972). 

The good agreement between the 322 x 16 and 323 runs shown in figure 19 suggest 
that P =  16 is adequate vertical resolution. While we are less confident that 
M = N = 32 gives adequate horizontal resolution, the contour maps plotted in figure 
18 suggest horizontal errors are not too large. 

5.3.  Character of the three-dimensional flow at CT = 10 

We now examine the qualitative aspects of the flow, and present information on how 
turbulently active the present three-dimensional calculations are relative to 
experimental flows and previous calculations of homogeneous turbulence. We discuss 
here only the high-resolution 322 x 16 and 323 results. It is convenient to introduce 
measures of isotropization, transfer to small scales, and other indicators of nonlinearity 
such as Reynolds and PBclet numbers. 

2 F L Y  147 
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FIGURE 19. Comparison of time series (0 < t < 4.0) at Ra = 70Ra, for the three resolutions 163, 
3Z2 x 16 and 3Z3 for the temperature fields T ( p ,  t ) .  

The discussion of isotropization is facilitated by the introduction of orthogonal 
solenoidal unit vectors e,(k)  and e,(k),  defined by 

and 

where 2 is the unit vertical vector. The buoyant acceleration in (2.1) is parallel to 
e , (k) ;  velocity components parallel to e,(k)  must either be present in the initial data 
or be activated by nonlinear interactions in (2.1). Conversely, if buoyancy is absent, 
nonlinear mixing will lead to  equipartition of energy of u(k, t )  along e,(k) and e,(k).  
A convenient measure of isotropy is thus given by resolving the kinetic energy along 
these components : 

Ilrl@) = <le,(k)-U(k)12>> (5.3) 

Ilrdt) = <l~Z(k) .~ (k ) IZ>> (5.4) 

where the angular brackets denote an average over the entire periodic volume (a sum 
over all available wavenumbers). For isotropic turbulence = +,, so a gross 
measure of the departure from isotropy is given by 

I2  = +,/$2. (5 .5)  

In  the absence of anisotropic forcing (and boundaries), the nonlinear terms in the 
Navier-Stokes equations should lead to  isotropization of the flow field. A measure 
of this rate is given by (D(+, - +z)/Dt)NL, where the subscript NL signifies that only 
t,he nonlinear terms v - V v -  V p  are retained in the dynamics. According to classical 
turbulence phenomenology (Rotta 1951 ) and earliernumerical calculations (Schumann 
& Herrring 1976), the attenuation of anisotropy should proceed at the rate 
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where C, is a constant, E is the total kinetic energy, L an integral lengthscale, 
conveniently taken as 

and e is the kinetic-energy dissipation rate. The presence of slip boundaries must 
modify these considerations, but the core of the flow remains approximately 
homogeneous. A relaxation formula similar to (5.6) may also employed for the heat- 
flux (Nusselt number) Nu 

L = E%/E,  (5.7) 

[y] = C - N u .  lG 
NL T L  

If the turbulence is vigorous, we expect an appreciable amount of energy (and 
entropy) to cascade to scales much smaller than L where dissipation removes them. 
The Taylor microscale for the velocity field is 

where u is a component of the velocity field. Similarly the temperature microscale 
is 

(5.10) 

Here the primes indicate a deviation from the horizontal average. Microscale 
Reynolds and PQclet numbers may now be introduced on the basis of the lengthscales 
(5.71, (5.9), and (5.10): 

( U 2 ) t A U  

(u2)B L 

R, = 9 

V 

p =- 
L- K ' 

( U y  A, 
PA = 

K 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

Another convenient measure of nonlinear cascade to small scales are skewnesses, 
defined as 

(5.15) 

with similar expressions for the (y, 2)-directions. For isotropic three-dimensional 
turbulence at moderate and large R,, S,,, z 0.5. On the other hand, in two 
dimensions S,,, = 0, since S,,, measures the rate of stretching of vorticity, which 
is zero for two-dimensional flow. For isotropic turbulence, S,,, a ( v*V2(av/at) , , ) .  
A similar temperature-transfer-sensitive skewness is 

(5.16) 

Again, for isotropic turbulence SuTT a (TV2(i3T/at)NL) (Monin & Yaglom 1975). 
In figure 20 information on turbulence parameters is plotted, averaged during the 

statistically stationary, late-time phase of the runs. Notice that S,,, is very small 
for Ra ,< 50Ra,. The behaviour of S,,, is similar to that for the isotropy ratio I (see 

2-2 
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FIGURE 20. Turbulence parameters Suu, SuTT, I and R, as functions of RalRa, during the later 
portion of the computed time record. These quantities are the velocity skewness (5.15), the mixed 
temperature skewness (5.16), the isotropy ratio (5 .5)  (labelled by the points A) and the microscale 
Reynolds number (5.12) respectively. The resolution of runs used here is 32* x 16. The variation 
of the isotropy ratio with Ra has a more-complex structure than the other plotted parameters. The 
solid labelled circles are for a u = 1, Ra = 70Ra, run with identical initial conditions (see $5.4). 

(5.5)). In this same Ra-region the (w,T)-probes (displayed in figure 15) indicate a 
transition from simple harmonic oscillations toward a harmonically richer behaviour. 
For RalRa, = 7CL80, the values of R, and S,,, are consistent with the measurements 
of Tavoularis, Bennett & Corrsin (1978) and the homogeneous turbulence calculations 
of Herring & Kerr (1982). The values of SuTT are large and near their saturation value 
for all these runs even for quite small R,. 

In  figure 21 plots are given of the behaviour of the isotropization rates C,(t) and 
C,(t), defined by (5.6) and (5 .8)  respectively, at Ra = 60Ra,. The behaviour of C,(t) 
is quite anomalous for early times ( t  5 10) compared with that expected pheno- 
menologically. Apparently the flow shows little tendency to isotropize in space, 
except during an event, when isotropization reaches an abnormally large, and 
short-lived, value. At longer times the amplitudes of these excursions subside and 
C, appears to approach an average value of about -3.6. The behaviour of C T ( t )  is 
as expected, and the value obtained, C ,  x -0.9, is in rough agreement with that 
assumed in turbulence-transport models. 

We now turn to a more-detailed consideration of the temporal and spatial 
behaviour of three-dimensional convection as a function of Ra. The results to be 
discussed are presented in figure 22, which shows midplane contours of w ( x ,  t ) ,  T ( x ,  t ) ,  
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FIGURE 21. Time series for the isotropization rates C, (5.6) and C, (5 .8)  for Ra = 60Ra, a t  resolution 
322 x 16. The evolution of C,,(t) is dominated by ‘bursts’, suggesting little tendency to isotropize 
except a t  those times when C,, is unusually large; C,(t)  is more typical of homogeneous 
turbulence. 

(V xu) ,  and ( T )  (x, t ) ,  as functions of x for runs 40(3Z2 x 16), 55(3Z2 x 16) and 
70(322 x 16). These plots were selected as typical during the statistically stationary, 
late-time,period of the convection. We shall postpone temporarily the discussion of 
the time development of the flow. We first examine the sequence ( T )  as a function 
of Ra. Note that the core-convection region has a stable temperature gradient, as 
found in two dimensions (see $4). The stable core region appears typical of quasi- 
two-dimensional convection. The stable core region appears necessary to retard the 
convective instability, in the absence of a cascade to large wavenumbers, which is 
inhibited by the quasi-two-dimensionality . Just for the two-dimensional cases 
discussed in $4, we find that the most energetic frequency of the periodic and 
quasi-periodic cases (i.e. 40(3Z2 x 16) and x 16)) corresponds closely to the 
Brunt-Vaisala frequency characteristic of the core region. However, the planform of 
the oscillations here is three-dimensional. This may be seen in figure 2 2 ( a ) ,  which 
shows the w-contours at the midplane. The motion a t  Ra = 40Ra, consists of 
three-dimensional lenticular plumes imbedded in the core of the two-dimensional 
rolls. The temporal oscillations concur with a waxing and waning of these lenticular 
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T ( f 3 )  T(f4) 

FIGURE 23. Midplane contour plots of T(z,y,0.5,t) for t  = (17.63, 17.64, 17.65, 17.66) for the run 
70(32a x 16) with = 10. This sequence of contour plots shows the reconnection of zero-temperature 
lines separating cool from warm fluid. 

patterns. From figure 22(c) for the midplane vertical vorticity field we deduce the 
horizontal convergence needed to support this pattern. Quite similar w-contours have 
been observed in the calculations of Grotzbach (1982, 1983) and Eidson (1982) with 
rigid boundaries. The resulting motion gives rise to an asymmetric mean-temperature 
profile, as shown in figure 22 ( d ) .  The asymmetry appears as a hot (or cold) anomaly 
just exterior to the upper or lower boundary layer. The position of this anomaly 
oscillates from top to bottom at  the BrunGVaisala frequency. 

As Ra is increased from 40Ra, to  50Rac the roll boundaries begin to  execute a 
sinuous undulation, whose intensity increases with Ra. The frequency of this 
undulation (which becomes meandering at large Ra)  is the lower frequency of the 
two-component mode described in $5.2. At Ra = 55Ra, there appears to be some 
low-level random noise. This noise is manifest in the merging of roll neutral lines, 
which find themselves in near contact because of the roll-boundary meandering. As 
these neutral lines separating cool from warm fluid touch they may reconnect so as 
to allow cool (or warm) fluid to flow horizontally into a more three-dimensional and 
irregular pattern. The sinuous (meandering at larger Ra)  mode has little intensity 
at Ra = 50Ra,, but its energy becomes dominant at Ra = 70Rac. 

One significant feature of the temperature signal for 70(322 x 16) is the sharp 
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W 

FIGURE 24. Midplane contours of (a )  w(x, y, 0.5, t ) ;  (6) T(z, y, 0.5, t ) ;  (c) (V x u ) ~  (x, y, 0.5, t ) ;  ( d )  
(T) (z ,  t )  and -a(T)/az; all at t = 4 for CT = 1. These should be compared to otherwise equivalent 

= 10 results contoured in figure 22. The resolution is 322 x 16. 

negative burst of relatively low frequency. This corresponds to a sweeping of the 
low-temperature core of the sinuous roll past the probe. This occurs somewhat 
arrhythmically, and the roll boundaries are somewhat ill-defined ; the roll boundaries 
are also beginning to disintegrate, as illustrated in figure 23. I n  this figure we show 
a time series illustrating the oscillation of roll boundaries, which gives rise to an 
outbreak of a three-dimensional event. 

Overall we note that the temperature field is considerably more turbulent than the 
velocity field. The reason is clearly the large Prandtl number (a = 10). This behaviour 
of T is not a t  all unexpected. However, it  suggests that more attention should be 
focused on temperature measurements, as opposed to velocity measurements, 
particularly for large-Prandtl-number fluids. If only velocity-field information were 
available, we would considerably under-estimate the level of turbulent activity. 

5.4. Comparison with three-dimensional resuEts at cr = 1 

The three-dimensional flows so far described have developed a random character a t  
large Ra,  but are still strongly two-dimensional, and show only a small kinetic-energy 
transfer to small scales. This aspect of the flow is likely attributable to the large 
Prandtl number, which leads to the fact that the turbulence is more nearly an aspect 
of the temperature than the velocity field. This is an inhospitable regime for direct 
numerical calculations, because of the wide range of scales of the velocity and 
temperature fields. Here we present some results a t  v = 1 ,  in which the two scales 
are more nearly equal. The resulting flow is more nearly isotropic, and the energy 
transfer to small scales is larger. 
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T 

t t 

FIGURE 25. Time series of T (a )  and w (6) at the midpoint of the box, and power spectral densities 
of T (c) and w (d )  for the run 50(163) with = 10 and Rayleigh-number modulaton according to 
(5.19) with E = O . l , j =  24. 

In figure 24 contour plots of w, T, (V x u), and ( T )  (x, t )  are given at t = 4 for u = 1 
for resolution 322 x 16. The same seed random number has been used as for the u = 10 
calculations shown in figure 22. A rather striking difference in the contour plots is 
that they now appear to be nearly statistically symmetric in (2, y). There no longer 
appears to be a persistent stable thermal core (although ephemeral stable gradients 
do appear occasionally) and, consequently, the flow is not characterized by a single 
oscillation at  the Brunt-Vaisala frequency. The values of Xu,, w 0.44, SuTT w 0.55, 
I z 0.58 and RA w 14.4 for the Ra = 70Ra,, u = 1 run are shown in figure 20 as solid 
circles. All of these turbulence measures (except Xu,,) show a marked increase above 
their u = 10 values. 

It is possible that the present results overestimate considerably the Rayleigh 
numbers a t  which transition to chaotic behaviour 0ecurs.t It has been shown 
(Zippelius & Siggia 1982; Siggia & Zippelius 1981) that, for small u, large-aspect-ratio 
convecting layers between free-slip boundaries may be unstable to modes that 
produce a weakly chaotic system of shifting roll patterns. We have not been able to 
study this possiblity with our present numerical codes. 

t Note added in proof: For example, in some more recent studies with u = 10 and aspect ratio 
4 4 2 ,  transition to a weak temporal chaos is observed as low as RalRa, x 34. 
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5.5. Effects of Rayleigh-number oxillations 

Gollub & Benson (1980) found that frequency modulation of wall temperature of the 
form 

Ra( t )  = Ra(0) [ 1 + E sin 2nftI (5.17) 

induces chaotic behaviour in a quasi-periodic flow close t,o transition. We have 
investigated this phenomenon numerically in both two and three dimensions. We 
choose E = 0.1 and the oscillation frequency f to  be incommensurate with the 
frequencies of the quasi-periodic motion. 

In  two dimensions we found little eEect of this Rayleigh-number modulation, but 
in three dimensions the effect is quite striking. With 163 resolution, Ra(0)  = 50Ra,, 
E = 0.1 and f = 24 (between the two largest lines of the power spectrum - see figure 
13) the results plotted in figure 25 are obtained. Notice the enhanced noisiness of 
this flow compared with that with E = 0 (see figures 12 and 13). This flow is even 
noisier than the constant-Rayleigh-number flow a t  Ra = 65Ra, even though 
max, Ra( t )  = 55Ra,. This enhanced randomness is reflected in the isotropy ratio I 
and skewness factor S,,,. When E increases from 0 to 0.1, I increases from about 0.15 
to about 0.4, while Xu,, increases from about 0.04 to about 0.3. 

These three-dimensional results support the conjecture that periodic modulation 
of the Rayleigh number in a two-frequency flow may provide the third frequency 
necessary to  induce chaos in the Ruelle et al. scenario. However, the lack of strong 
chaos in the modulated two-dimensional convection problem may suggest a somewhat 
more subtle dynamical process. 

Finally we comment on a fundamental fact found in recent experimental work of 
Ahlers & Behringer (1978), Gollub, McCarriar & Steinman (1982), Gollub & Benson 
( 1980), viz that in Rayleigh-BBnard convection there is no single favoured bifurcation 
sequence leading to turbulence. Indeed the transition to turbulence depends on 
geometry and stress parameters (Ra, a) as well as initial conditions. 

Once the geometry is chosen and the parameter set is fixed, the phase space of an 
experiment or numerical simulation probably contains a variety of attracting 
solutions, either stationary, periodic or strange. Kirchartz et al. (1981) and Gollub 
et al. (1982) have shown that for circular and rectangular geometries multiple stable 
states exist just above the convective threshold in Rayleigh-BBnard convection (see 
also Cross et al. 1983). It is reasonable to expect that  such solutions will become 
unstable as parameters arc varied, and each could lead to its own distinct route to  
turbulence. 

The three-dimensional simulations presented here are limited to box geometries 
with free-slip boundary conditions, so it is difficult to compare our numerical results 
with physical experiments. However, we have observed only one route to turbulence 
that parallels route I of Gollub & Benson (1980) and is consistent with the 
Ruelle-Takens-Newhousc (1978) scenario. 

We would like to thank Professor E. D. Siggia for helpful discussions, and Professor 
A. Libchaber for permission to reproduce figure 9 ( e ) .  The computations reported here 
were performcd at the Computing Facility of the National Center for Atmospheric 
Research, Boulder, CO, which is supported by the National Science Foundation. Two 
of us (J .L.  and S.A.O.) would like to acknowledge support of this work by the 
National Science Foundation under Grants ATM-8310210 and MEA-8215695, the 
Office of Naval Research under Contracts N00014-77-(3-0138 and N00014-82-C-0451, 



Order and disorder in Be‘nard convection 37 

and the Air Force Office of Scientific Research under Contract AFOSR-83-0089. 
J. H. C. would like to thank the National Science Foundation for support under Grant 
PRM-8106833, and the National Research Council for fellowship support. 

R E F E R E N C E S  

BRACHET, M. E., MEIRON, D. I., ORSZAG, S. A., NICKEL, B. G., MORF, R. H. & FRISCH, U. 1983 

BUSSE, F. H. 1972 Oscillatory instability of convection rolls in a low Prandtl number fluid. J .  Fluid 

CROSS, M. C., DANIELS, P. G., HOHENBERG, P. C. & SIGGIA, E. D. 1983 Phase-winding solutions 

CURRY, J. H. 1978 Generalized Lorenz systems. Commun. Math. Phys. 60, 193-204. 
CURRY, J. H. 1979 Chaotic response to periodic modulation. Phys. Rev. Lett. 43, 1013-1016. 
EIDSON, T. M. 1982 Numerical simulation of a turbulent Rayleigh-BBnard problem using subgrid 

scale modelling. Ph.D. thesis, Dept Mech. Engng, Univ. Michigan, Ann Arbor. 
FEIGENBAUM, M. J. 1978 Quantitative universality for a class of nonlinear transformation. J .  Stat. 

Phys. 19, 25-52. 
GOLLUB, J. P. & BENSON, S. V.  1980 Many routes to turbulent convection. J .  Fluid Mech. 100, 

449-470. 
GOLLUB, J. P., MCCARRIAR, A. R. & STEINMAN, J. F. 1982 Convective pattern evolution and 

secondary instabilities. J .  Fluid Mech. 125, 259-281. 
GROTZBACH, G. 1982 Direct numerical simulation of laminar and turbulent B6nard convection. 

J .  Fluid Mech. 119, 27-53. 
GROTZBACH, G. 1983 Spatial resolution requirement for direct numerical simulation of Rayleigh- 

Benard convection. J .  Comp. Phys. 49, 241-264. 
HERRING, J. R. & KERR, R. M. 1982 Comparison of direct numerical simulation with predictions 

of two-point closures for isotropic turbulence convecting a passive scalar. J .  Fluid Mech. 118, 
205-219. 

KIRCHARTZ, K .  K.. MULLER, U., OERTEL, H. & ZIEREP, J. 1981 Axisymmetric and non- 
axisymmetric convection in a cylindrical container. Acta Mech. 40, 181-194. 

KRAICHNAN, R. H. 1967 Inertial ranges in two dimensional turbulence. Phys. Fluids 13,569-575. 
LANDAU, L. D. & LIFSHITZ, E. M. 1959 Fluid Mechanics. Addison-Wesley. 
LEITH, C. E. & KRAICHNAN, R. H. 1972 Predictability of turbulent flows. J .  Atmos. Sci. 29, 

LORENZ, E. N. 1963 Deterministic non-periodic flow. J .  Atmos. ~Sci. 20, 13&141. 
MARCUS, P. S. 1981 Effects of truncation in modal representations of thermal convection. J .  Fluid 

Mech. 103, 241-255. 
MCLAUGHLIN, J .  & ORSZAG, S. A. 1982 Transition from periodic to chaotic thermal convection. 

J .  Fluid Mech. 122, 123-142. 
MONIN, A. S. & YAGLOM, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press. 
MOORE, D. R., TOOMRE, J., KNOBLOCH, E. & WEISS, N. 0. 1983 Period doubling and chaos in 

partial differential equations for thermosolutal convection. Nature 303, 663-667. 

MOORE, D. R. & WEISS. N. 0. 1973 Two-dimensional Rayleigh-Benard convection. J .  Fluid Mech. 
58, 289-312. 

ORSZAG, S. A. 1971 Numerical simulation of incompressible flows within simple boundaries, 
I. Galerkin (spectral) representations. Stud. AppZ. Maths 50, 293-327. 

ORSZAG, S. A. & KELLS, L. C. 1980 Transition to turbulence in plane Poiseuille and plane Couette 
flow. J .  Fluid Mech. 96, 159-205. 

ORSZAG, 6. A. & PATTERSON, G. S. 1972 Numerical simulation of turbulence. In Statisticak Modets 
and Turbulence (ed. M.  Rosenblatt & C .  Van Atta). Lecture Notes in Physics, vol. 12, pp. 
127-147. Springer. 

Small-scale structure of the Taylor-Green vortex. J .  FZuid Mech. 130, 411452.  

Mech. 52, 97-1 12. 

in a finite container above the convective threshold. J .  Fluid Mech. 30, 465. 

104 1- 1058. 



38 J .  H. Curry, J .  R. Herring, J .  Loncaric and S.  A .  Orszag 

POMEAU, Y. & MANNEVILLE, P. 1980 Intermittent transition to turbulence in dissipative systems. 

RAND, D., OSTLUND, S., SETHNA, J. & SIGGIA, E. 1982 Universal transition from quasi-periodicity 

ROTTA, J. C. 1951 Statistische Theorie nichthomogener Turbulenz. 2. Phys. 129, 547-572. 
RUELLE, D., TAKENS, F. & NEWHOUSE, S. E. 1978 Occurrence of strange axiom A attractors near 

quasi periodic flows on F , m >  3. Commun. Math. Phys. 64, 3540 .  
SCHUMANN, U. & HERRING, J. R. 1976 Axisymmetric homogeneous turbulence: a comparison of 

direct spectral simulations with the direct interaction approximation. J .  Fluid Meeh. 76, 
755-782. 

SIGGIA, E. D. & ZIPPELIUS, A. 1981 Dynamics of defects in Rayleigh-BBnard convection. Phys. 
Rev. A24, 103G1049. 

TAVOULARIS, S., BENNETT, J. C. & CORRSIN, S. 1978 Velocity derivative skewness in small 
Reynolds number and isotropic turbulence. J .  Fluid Mech. 88, 63-69. 

TREVE, Y. M. & MANLEY, 0. P. 1982 Energy conserving Galerkin approximations for 2-d 
hydrodynamic and MHD B6nard convection. Physica 4D, 319-342. 

ZIPPELIUS, A. & SIGGIA, E. D. 1982 Disappearance of stable convection between free-slip 
boundaries. Phys. Rev. A26, 1788-1790. 

Commun. Math. Phys. 74, 189-197. 

to chaos in dissipative systems. Phys. Rev. Lett. 49, 132-135. 


